Stochastic Models, Auctions, Wind and Demand
Should we guess who is coming the dinner?
Should we set an extra place at the table?
Should they have reservations?

Richard P. O'Neill
richard.oneill@ferc.gov
Washington, DC
Early contribution to statistical decision theory

Pascal's wager (hedge):

Pascal is unimpressed by *a priori* demonstrations that God exists.

"Endeavour ... to convince yourself, not by increase of proofs of God..., "we do not know if He is ...".

Pascal seeks *prudential* reasons for believing in God.

We should wager that God exists because it is the best bet.

<table>
<thead>
<tr>
<th></th>
<th>God exists</th>
<th>God does not exist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wager for God</td>
<td>Gain all</td>
<td>Status quo</td>
</tr>
<tr>
<td>Wager against God</td>
<td>Misery</td>
<td>Status quo</td>
</tr>
</tbody>
</table>

Decision theoretic formulation of the reasoning:

Maximizes expected utility
RISK AND THE REGULATORY COMPACT

- Utilities are usually given risk premia in ROE
- Often these risks are not very specific.
- What risks are we compensating for?
 - cost passthroughs ⇒ PGA, FAC, uplift
 - loss of customers ⇒ raise rates
 - recovery of stranded costs ⇒ 100%
 - prudence/used and useful?
- What are the compensated risks?
- Can we be more specific?
Sources of Risks

Market: competition, demand, input markets (CH_4, NO_x, SO_2, CO_2), liquidity, counterparty, incomplete contracts, contract breach, technology

Regulatory: FERC, PUCs, EPA, State gov, Federal gov

Financial: interest rates, bankruptcy, creditworthy

Natural: rain, snow, storms, heat, cold, quakes
Natural sources of risks

- Rain
- Snow
- Storms
- Heat
- Cold
- Wind
- Earthquakes
- Volcanoes

And after Global Warming has happened...

WHAT GOOD IS SECOND-GUESSING??
WHAT'S YOUR POLICY TO FIX THIS?

I have decided to call this a "tumble."

GLOBAL WARMING

I will be greeted with flowers.

Those went extinct...
False risk evaluation

- Cognitive dissonance
- Controllable: air vs. car
- Catastrophic:
 - Nuclear
 - Drought
 - Cancer
- Natural v. anthropogenic:
 - Global climate: sun v. man
 - Radiation: sun v. cell phones
- Risk/benefit tradeoffs: drugs
- Imposed v. voluntary: smoking
- Trust v. distrust
Big betters/big losers

- Long Term Capital Management
 Trillion Dollar Bet
- Amaranth Advisors
 - 2005 made an estimated $1 billion on rising energy prices in
 - 2006 lost more than $6 billion
- MotherRock Energy Fund
 - a $400 million portfolio,
 - 2006 shut down after losing money on its bets that natural gas prices would fall
Uncertainty

- How good is the data?
 - How are they measured?
- What are the important uncertainties?
 - How do they change the market outcome?
- Can the problem be solved?
- Is the market model correct?
 - Turn a stochastic problem into a deterministic equivalent
 - How are market participants compensated?
 - How to dealing with incomplete markets
- What are you buying and selling?
 - Option
 - Hedge
 - Commodity
Different types of uncertainties

- Lumpy outage: $s_{d_t} \approx s_{d_{t+1}}$
 - e.g., equipment outage
 - sd is the standard deviation

- Time decreasing uncertainty: $s_{d_t} < s_{d_{t+1}}$
 - e.g., weather: heat, cold, wind, humidity

- demand, generation, transmission = f(weather)

- solution uncertainty finding the optimal solution and operator intervention.
ISO market design
a three-stage game

First: The market design itself can be analyzed as a cooperative game
- cooperation is encouraged
- the market rules are decided by voting rules
- This part is often taken as a given in the electricity market literature.

The ISO operates several planning processes, reliability assessments, and rights and cost allocation systems

The third stage is the markets themselves
- Incomplete and indefinitely repeated
Public goods or externalities?

- When is a public good not a public good?
- Should winners compensate the losers?
- Public goods need a market definition.
- What happens to those who do not benefit?
- This turns them into club goods since those outside the market don’t pay
- Clubs have ownership and usage rights and fees
- We should analyze the expected positive and negative both social and pecuniary externalities?
- the Lindahl equations define the club membership.
<table>
<thead>
<tr>
<th>Good type</th>
<th>quantity</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>private</td>
<td>private</td>
<td>public</td>
</tr>
<tr>
<td>Public</td>
<td>public</td>
<td>Private</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Club</th>
<th>membership</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>private</td>
<td>private</td>
</tr>
<tr>
<td></td>
<td>usage</td>
<td>public</td>
</tr>
</tbody>
</table>
Deterministic public goods

Buyer i given p_i: $\text{Max}_{q_i \geq 0} u_i(q_i) - p_i q_i$

first order condition: $q_i^* [u'_i(q_i^*) - p_i] = 0$

if $u'_i(q_i^*) < p_i$ $q_i^* = 0$ no benefit

if $u'_i(q_i^*) = p_i$ q_i^* benefit

Supplier: $\text{Max}_{q \geq 0} \sum_{i,k} p_i q - c(q)$

first order condition: $\sum_i p_i = c'(q)$
Stochastic Club Goods
two part tariffs

Membership of i given p_i over k with prob ρ_k:

$$\text{Max } q_{ik} \sum_k \rho_k [u_i(q_{ik}) - p_i q_{ik}]$$

first order condition: $\sum_k \rho_k [u_i'(q_{ik}^*) - p_i] = 0$

if $\sum_k \rho_k u_i'(q_{ik}^*) < p_i$, $q_i^* = 0$ no membership

if $\sum_k \rho_k u_i'(q_{ik}^*) = p_i$, $q_i^* > 0$ membership

$\sum_{i,k} \rho_k [u_i(q_{ik})] = q$

Club: $\text{Max } q \geq 0 \sum_{i,k} [\rho_k p_i q - c(q)]$

$q^* [\sum_i p_i - c'(q^*)] = 0$
Private, public and club goods

- Real power is a private good.
- Reactive power is a private good, but we treat it as a semi public good.
 - Pay opportunity costs
 - Creates regulatory must run generators
- Frequency is an interconnection-wide public good
- Voltage is a local public (club) good
Energy Markets

<table>
<thead>
<tr>
<th>Energy Markets</th>
<th>Economic characterization</th>
<th>Engineering characterization</th>
<th>Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>collective call option</td>
<td>reliability</td>
<td>one part market-clearing price</td>
</tr>
<tr>
<td>day-ahead market</td>
<td>private hedge</td>
<td>unit and energy commitment</td>
<td>two part market-clearing price</td>
</tr>
<tr>
<td>Residual unit commitment</td>
<td>public hedge reliability</td>
<td>additional unit commitment</td>
<td>one part (startup) pay as bid</td>
</tr>
<tr>
<td>Real-time market</td>
<td>private realization</td>
<td>energy</td>
<td>one part</td>
</tr>
</tbody>
</table>
Stochastic MIP unit commitment

K is the set of an random events, $k \in K$, $

\rho_k$ is the probably of k and $\sum_k \rho_k = 1$.

Max $\sum_{i,k} \rho_k b_i q_{ik} + f_i z_i$

$\sum_i q_{ik} = 0 \quad k \in K$

$q_{ik} - q^+_{ik} z_i \leq 0 \quad k \in K$

$-q_{ik} + q^-_{ik} z_i \leq 0 \quad k \in K$

$z_i \in \{0, 1\}, \{0, 1\}^n = Z, \quad i = 1, ..., n$
The dual of the restricted model

Min \(z_i^* \mu_i \)

\[
p_k - \alpha_{ik} + \beta_{ik} = \rho_k b_i
\]

\[
q^-_{ik} \beta_{ik} - q^+_{ik} \alpha_{ik} + \mu_i = f_i
\]

expected market-clearing price is

\[
p = \sum_k p_k - \alpha_{ik} + \beta_{ik} = \sum_k \rho_k b^*_i,
\]

where \(b^*_i \) is the market clearing price in event \(k \).

\[
\sum_k [q^-_{ik} \beta_{ik} - q^+_{ik} \alpha_{ik}] + \mu_i = f_i
\]
transmission

- Is transmission a public good? No
- Is it a club good? Yes
- What are the property rights?
 - To congestion
 - For new club members
- SPP transmission market proposal: find a state core with side payments?
- NYISO modified Argentina approach voting
- Merchant transmission
Transmission Markets

<table>
<thead>
<tr>
<th>Transmission Market</th>
<th>Economic characterization</th>
<th>Engineering characterization</th>
<th>Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>public good</td>
<td>reliability</td>
<td>cost/load</td>
</tr>
<tr>
<td>Allocation of rights</td>
<td>allocation</td>
<td>fairness</td>
<td>none</td>
</tr>
<tr>
<td>Hedge auctions</td>
<td>hedge</td>
<td>none</td>
<td>one part</td>
</tr>
<tr>
<td>day-ahead market</td>
<td>formal cash out</td>
<td></td>
<td>one part</td>
</tr>
<tr>
<td>Real-time market</td>
<td>virtual cashout</td>
<td>energy</td>
<td>one part</td>
</tr>
</tbody>
</table>

September 23, 2008
Characterization of electricity markets

- Stochastic market models
 - Two stage models?
 - Chance-constrained?
 - Bad deterministic equivalent markets

- Make assumptions to get a deterministic market

- Chance-constrained model
Loss of load probability

- 'One day in ten years'
- Design for LOLP < 1/3650
- Actually one event in ten years
 - increase reliability
- Should it be ac MWday or an outage event
Bid strategy in the day-ahead market with stochastic outages

- Parameters and assumptions:
 - day-ahead market residual demand curve is \(p_D(y) = a - by \).
 - Real-time market price with gen 1 is \(p_R \).
 - Real-time market price without gen 1 is \(p_R^x = p_R + d \)

<table>
<thead>
<tr>
<th>capacity</th>
<th>Running cost</th>
<th>Probability of outage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator 1</td>
<td>K</td>
<td>c</td>
</tr>
</tbody>
</table>
Decision Strategy:

- the generator must decide how much to offer, y into day-ahead market
- maximize expected profits: $\pi(y)$.

$$\pi(y) = p_D(y)y - p_Ry(1-\alpha) + (p_R-c)K(1-\alpha) - p_Rx\alpha$$

- For the optimal strategy, y^*, $\pi'(y^*) = 0$.
- $y^* = \frac{a-(p_R+d\alpha)}{2b}$.
- the monopoly result $y^* = \frac{a-c}{2b}$
Demand, capacity, wind and smart markets

- If demand is price responsive,
 - Quantity risk is converted to price risk
 - Capacity markets become financial options
 - Reliability markets have shorter lead times

- Wind can clear the real-time markets

- Electric vehicles becomes storage devices

- Smart market operator
 - Commits load, transmission and generation