Markets for Resource Adequacy

Peter Cramton
University of Maryland
(joint with Steven Stoft)
17 May 2007
Goals of electricity markets

• Short-run efficiency
 – Least-cost operation of existing resources

• Long-run efficiency
 – Right quantity and mix of resources
A tale of two markets

• New England (33 GW)
 – Thermal dominated
 – Reliability
 • Resources to serve annual peak
 • Resources to respond to contingencies
 – Product
 • Capacity: Ability to supply energy during hours short of reserves

• Colombia (13 GW)
 – Hydro dominated
 – Reliability
 • Resources to supply energy in dry period
 – Product
 • Firm energy: Ability to supply energy during dry periods
Why a firm energy market at all?
Other industries don’t have one

Short run

Long run

\[E(Rent) = \text{Fixed cost} \]
Electricity demand is inelastic

Result: Generators cannot cover fixed costs from energy revenues
Why have a market?

- Absence of demand response
- Market power during scarcity
- Spot prices too low during scarcity
 - Price caps
 - Operator decisions, such as voltage reduction, which impact price
Energy-only is problematic

- High risk (occasional NZ$17,000 price)
- Market power
- Weak investment signal
- Intervention likely
 - Government’s Whirinaki 155 MW reserve plant
 - Needed for 1 in 60 dry year
Purpose of market

- Induce just enough investment to maintain adequate resources
- Induce efficient mix of resources
- Reduce market risk
- Avoid market power in firm energy market
- Reduce market power in energy market
- Pay no more than necessary
Key features
Forward procurement

• New projects compete in advance of entry
 – Coordinated entry
 • Less uncertainty in achieving target
 • Avoid boom/bust
 – New entry sets price directly

• Long-term commitment for new resources
 – Reduced investor risk
 – Better price signal for new investment
Product

• Firm energy — availability of energy during scarcity events
 – Dry period (seasonal scarcity)
 – Outages (spot scarcity)
• Scarcity event defined by high energy price
 – Energy price is a *transparent* trigger
 – Energy price is a *reliable* trigger
Product is:

- Firm energy + mandatory hedge
- Firm energy =
 - Expected energy contribution to system in dry period
- Mandatory hedge = (call option)
 - Obligation follows load
 - Unit’s daily obligation based on its firm energy sold
 - Obligation over day tied to dispatch
 - Matching obligations with dispatch improves the performance of the spot energy market
 - Rewarded if shift output to higher priced hours
Planning period

- Time between auction date and start of commitment
- 4 years — long enough for new entry to occur (except large hydro projects)
- Makes firm energy market contestable and allows new entry to set the price
 - Existing resources would set the wrong price because of sunk costs and market power
Commitment period

• New resource — up to 20 years
 – Long commitment lets new resource lock-in firm energy price, reducing risk and encouraging investment

• Existing resource — one year
 – Does not need long commitment, since costs are already sunk
 – Short commitment reduces risk (more draws from price distribution)
Demand curve

Curve reflects marginal value of firm energy

Able to withstand scarcity events worse than worst-case benchmark

CONE = Cost of New Entry (marginal unit)
Descending clock auction

Price

starting price

$12.00 = P_0$

$6.17 = P_6$

$6.00 = P_6'$

Demand

Quantity

Aggregate supply curve

excess supply

Round 1

Round 2

Round 3

Round 4

Round 5

clearing price

P_1

P_2

P_3

P_4

P_5
Market power

• Addressing market power in firm energy market is essential

• Strong incentive to exercise market power
 – Existing resources have substantial sunk costs
 – New resources are only a tiny fraction of total
 – Market is concentrated
 • Any of top-4 suppliers could unilaterally set price

• Long-term price signals are more stable and efficient if determined from competitive forces, rather than market power
Market power solution

• New resource
 – Bids are not mitigated in any way
 – Assumes competition for new resources

• Existing resource
 – Resource can opt out of market or retire
 – Opt-out bid
 • Not revealed during auction
 • Cannot impact the price for existing supply
 – Retirement
 • Can impact price, but exit is permanent
Performance incentives

- Performance incentives come from energy spot price; this is not changed by hedge
- Hedge assures that normal performance will receive normal reward in wet and dry years alike
- Every extra MWh of energy is rewarded the same with or without hedge
 - Those that perform better receive more
 - Those that perform worse receive less
Why not have a very high strike price? (US$250 or more)

• Benefits of call option are largely lost
 – Load hedge
 – Mitigation of market power in spot energy market

• No reason to set strike price higher than marginal cost of an expensive thermal unit
Simulation
Purpose

• Assess supplier risk
• Consider variations of market design
• Evaluate alternative auction parameters
Distribution of annual profits per MWh of firm energy

- Hedge dramatically reduces risk
- Energy rent primary source of risk
- Impact of higher strike price
 - Profit distribution shifts toward no hedge case
 - Large increase in energy rent risk
 - Small decrease in hedge payment risk
 - Large increase in profit risk overall
Conclusion
Physical resource with hedge

• Coordinated entry reduces boom/bust cycle
• Hedge reduces risk
 – Load is hedged from high spot prices
 – Suppliers get nearly constant payment, rather than highly variable peak energy rents
• Hedge improves spot market
 – Mitigates market power problem during scarcity
 • Can rely on demand response rather than rationing
 – Better spot market improves forward energy market
 • Spot energy prices are more stable and predictable