NODAL PRICES IN THE DAY-AHEAD MARKET

Fred Murphy
Temple University
AEG Meeting, Washington, DC
Sept. 17, 2008

What we cover

• Two-stage stochastic program for contingency analysis in the day-ahead auction.
• Find the LMPs and the expected marginal value of electricity from the dual variables.
• Show differences with current duals
• Show marginal value problem
• Bouffard, Galiana, and Conejo (2005)
Objective function:

$$\max_{P_{gi}, L_i, R_i, S_i} \left(\sum_{i=1}^{N} \sum_{l=1}^{nb} \sum_{i=1}^{nq} C_{Li} L_i^l - \sum_{i=1}^{N} \sum_{q=1}^{nob} C_{qi} P_{gi} \right) + \sum_{k=1}^{K} \sum_{i=1}^{N} \left(\sum_{u=1}^{ns} b_{giu} S_{iu}^k - \sum_{v=1}^{nr} b_{Li}^{v} R_i^{v} \right)$$

Inequality constraints for offer/bid blocks and total node generation/load bounds, respectively:

$$P_{gi}^{min} \leq P_{gi} \leq P_{gi}^{max} \quad L_i^{l, min} \leq L_i^l \leq L_i^{l, max}$$

$$P_{gi} = \sum_{q=1}^{no} P_{gi}^q \quad \lambda_{gi} \quad L_i = \sum_{l=1}^{nb} L_i^l \quad \lambda_{Li}$$

$$P_{gi}^{min} \leq P_{gi} \leq P_{gi}^{max} \quad L_i^{l, min} \leq L_i^l \leq L_i^{l, max}$$

Power-balance equality constraint and branch-flow inequality constraints for normal operating conditions.

$$NG_i = P_{gi} - L_i \quad \lambda_{NGi} \quad \sum_{i=1}^{n} NG_i = 0 \quad \lambda_{bal}$$

$$-P_{bj}^{max} \leq \sum_{i=1}^{n} SF_{ji} \cdot NG_i \leq P_{bj}^{max}$$
Generation reduction and load-shedding inequality constraints,
load balance equality constraints and branch flow inequality
constraints for contingency conditions

\[0 \leq S_{i}^{u,k} \leq S_{i}^{u,k,\text{max}} \quad 0 \leq R_{i}^{v,k} \leq R_{i}^{v,k,\text{max}} \]

\[\sum_{u=1}^{n_{S}} S_{i}^{u,k} + P_{gi}^{k} = P_{gi} \quad \gamma_{gi}^{k} \quad \sum_{v=1}^{n_{r}} R_{i}^{v,k} + L_{i}^{k} = L_{i} \quad \gamma_{Li}^{k} \]

\[N_{Gi}^{k} = P_{gi}^{k} - L_{i}^{k} \quad \gamma_{NGi}^{k} \]

\[\sum_{i=1}^{N} N_{Gi}^{k} = 0 \quad \gamma_{bal}^{k} \]

\[-P_{bj}^{k,\text{max}} \leq \sum_{i=1}^{n} S_{fj}^{k} \cdot N_{Gi}^{k} \leq P_{bj}^{k,\text{max}} \quad \mu_{j}^{k} \]

<table>
<thead>
<tr>
<th>Activities</th>
<th>(L_{i}^{l})</th>
<th>(L_{i})</th>
<th>(P_{gi}^{q})</th>
<th>(P_{gi})</th>
<th>(L_{i}^{k})</th>
<th>(P_{gi}^{k})</th>
<th>(N_{Gi}^{k})</th>
<th>(N_{Gi}^{k})</th>
<th>(R_{i}^{v,k})</th>
<th>(S_{i}^{u,k})</th>
<th>(\text{Duals})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td></td>
</tr>
<tr>
<td>Tot load</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net gen</td>
<td></td>
</tr>
<tr>
<td>Sys net gn</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br cap</td>
<td></td>
</tr>
<tr>
<td>Prod w/</td>
<td>-1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dem w/</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net gen w/</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sys gen w/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br cap w/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\pm SF_{ji}^{k})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bounds</td>
<td>(\pm 1)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
The basic step sets the price
\[c_{gi}^q - \lambda_{gi} = 0 \quad c_{Li}^l - \lambda_{gi} = 0 \]

Repeating the same analysis for the shortage variables
\[p^k b_{gi}^u - \lambda_{gi}^k = 0 \quad p^k b_{Li}^v - \lambda_{Li}^k = 0 \]

From the activities \(P_{gi} \) and \(L_i \)
\[0 = -\lambda_{gi} + \lambda_{NGi} + \sum_{k=1}^{K} \lambda_{gi}^k \]
\[\lambda_{gi} = \lambda_{NGi} + \sum_{k=1}^{K} \lambda_{gi}^k \quad \text{Similarly} \quad \lambda_{Li} = \lambda_{NGi} + \sum_{k=1}^{K} \lambda_{Li}^k \]

The marginal value of consumption is reduced by the expected marginal losses incurred due to contingencies
\[c_{Li}^l = \lambda_{Li} = \lambda_{NGi} + \sum_{k=1}^{K} p^k b_{Li}^v \]

or
\[\lambda_{NGi} = \lambda_{Li} - \sum_{k=1}^{K} p^k b_{Li}^v \]

The expected marginal value of electricity is
\[EMV_{Li} = (1 - \sum_{k=1}^{K} p^k) c_{Li}^l - \sum_{k=1}^{K} p^k b_{Li}^v \]

When \(L_i^l \) is not basic
\[EMV_{Li} = (1 - \sum_{k=1}^{K} p^k) \lambda_{Li} - \sum_{k=1}^{K} p^k b_{Li}^v \]
The objective function with second-stage variables removed

$$\max_{P_g^l, L_l, R_l^q, S_l^q} \left(\sum_{i=1}^{N} \sum_{l=1}^{nb_i} c_{Li}^l L_l^i - \sum_{i=1}^{N} \sum_{q=1}^{no_i} c_{gi}^q P_g^q \right)$$

A Lagrangian with the removed constraints included and weighted by their duals

$$\max_{P_g^l, L_l, R_l^q, S_l^q} \left(\sum_{i=1}^{N} \sum_{l=1}^{nb_i} c_{Li}^l L_l^i - \sum_{i=1}^{N} \sum_{q=1}^{no_i} c_{gi}^q P_g^q - \left(\sum_{k \in K'} \lambda_{gi}^k \right) P_g^q - \left(\sum_{k \in K'} \lambda_{Li}^k \right) L_l^i \right)$$

λ_{gi} and λ_{Li} are the logical counterparts to the LMP’s in the current auction models

Comments

- Even though the first-stage prices better represent the economics of the marketplace, they still do not equate price with marginal value
- Changing prices with each contingency would add greatly to the volatility of the prices of one of the most volatile commodities
- Giving credits to consumers to account for the loss of surplus during a contingency requires a tax on consumers to create a reserve to pay for losses
<table>
<thead>
<tr>
<th>Scale factor on load-loss costs</th>
<th>0.05</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total demand</td>
<td>172</td>
<td>172</td>
<td>171</td>
<td>170</td>
<td>169</td>
<td>169</td>
<td>169</td>
<td>169</td>
<td>168</td>
<td>167</td>
</tr>
<tr>
<td>Number of positive shortage activities</td>
<td>1454</td>
<td>568</td>
<td>37</td>
<td>29</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1: Total demand and number of positive shortage activities in the solution.
Table 2: Selected LMP’s in load nodes as a function of shortage costs, measured in [$/MWh], based on the load duals from constraint (3). These duals are the market-clearing prices for the day-ahead auction.

<table>
<thead>
<tr>
<th>Node</th>
<th>Scale factor</th>
<th>0.0</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 7</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Node 16</td>
<td></td>
<td>54</td>
<td>54</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Node 18</td>
<td></td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>55</td>
<td>54</td>
<td>52</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Node 20</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Node 33</td>
<td></td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>56</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Node 45</td>
<td></td>
<td>36</td>
<td>36</td>
<td>37</td>
<td>39</td>
<td>43</td>
<td>47</td>
<td>51</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Node 49</td>
<td></td>
<td>37</td>
<td>37</td>
<td>35</td>
<td>32</td>
<td>25</td>
<td>17</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3: Selected duals at generation nodes (LMP’s), measured in [$/MWh], based on constraint (2), as a function of shortage costs.

<table>
<thead>
<tr>
<th>Node/ Scale factor</th>
<th>0.05</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 60</td>
<td></td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Node 62</td>
<td></td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Node 63</td>
<td></td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Node 64</td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Node 65</td>
<td></td>
<td>56</td>
<td>56</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Node 66</td>
<td></td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Node 67</td>
<td></td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Node 68</td>
<td></td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>
Table 4: Dual variables that incorporate the effect of losses due to shortages and are the expected values of electricity at each node in \(\$MWh\), which are lower than the auction prices in Table 2.

<table>
<thead>
<tr>
<th>Node\Scale factor</th>
<th>0.05</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 16</td>
<td>33</td>
<td>30</td>
<td>22</td>
<td>21</td>
<td>17</td>
<td>12</td>
<td>-14</td>
<td>-12</td>
<td>-36</td>
<td>-62</td>
</tr>
<tr>
<td>Node 62</td>
<td>44</td>
<td>42</td>
<td>33</td>
<td>30</td>
<td>24</td>
<td>21</td>
<td>-5</td>
<td>-5</td>
<td>-31</td>
<td>-59</td>
</tr>
<tr>
<td>Node 68</td>
<td>21</td>
<td>21</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>-27</td>
<td>-18</td>
<td>-33</td>
<td>-48</td>
</tr>
</tbody>
</table>

Table 5: Demand levels at selected nodes in [MWh].

<table>
<thead>
<tr>
<th>Node\Scale factor</th>
<th>0.05</th>
<th>0.2</th>
<th>0.4</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>N8</td>
<td>1.17</td>
<td>1.17</td>
<td>0.54</td>
<td>0.26</td>
<td>0.11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N9</td>
<td>0.57</td>
<td>0.57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N25</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
<td>2.73</td>
<td>2.80</td>
<td>2.80</td>
<td>2.80</td>
<td>2.80</td>
<td>2.80</td>
</tr>
<tr>
<td>N37</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>N40</td>
<td>2.67</td>
</tr>
<tr>
<td>N45</td>
<td>2.22</td>
<td>2.22</td>
<td>2.22</td>
<td>1.67</td>
<td>1.40</td>
<td>1.5</td>
<td>1.60</td>
<td>1.82</td>
<td>1.81</td>
<td>1.78</td>
</tr>
<tr>
<td>N46</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.04</td>
<td>1.51</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>N47</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.42</td>
<td>1.3</td>
<td>1.11</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>Surplus\Scale factor</td>
<td>0.05</td>
<td>0.2</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Transmission</td>
<td>96</td>
<td>89</td>
<td>88</td>
<td>79</td>
<td>74</td>
<td>86</td>
<td>103</td>
<td>103</td>
<td>86</td>
<td>81</td>
</tr>
<tr>
<td>Generation</td>
<td>1042</td>
<td>1037</td>
<td>1058</td>
<td>1070</td>
<td>1056</td>
<td>1048</td>
<td>1068</td>
<td>1094</td>
<td>1153</td>
<td>1173</td>
</tr>
<tr>
<td>Load</td>
<td>2735</td>
<td>2739</td>
<td>2718</td>
<td>2696</td>
<td>2681</td>
<td>2629</td>
<td>2538</td>
<td>2477</td>
<td>2407</td>
<td>2379</td>
</tr>
<tr>
<td>Total surplus</td>
<td>3873</td>
<td>3866</td>
<td>3864</td>
<td>3845</td>
<td>3813</td>
<td>3764</td>
<td>3709</td>
<td>3676</td>
<td>3647</td>
<td>3634</td>
</tr>
</tbody>
</table>

*Table 6: Rents and Surpluses for Transmission, Generation, and Demand ($)