Challenges for Balancing Area Coordination Considering High Wind Penetration

Robin Broder Hytowitz & Dr. Ben Hobbs, *Johns Hopkins University* Dr. Ozge Ozdemir, *Energy Research Centre of the Netherlands (ECN)*

TAIC/FERC Workshop, November 7-8 2014

Outline

- Motivation
- Background
- Initial Results
- Future Work

Motivation

- Renewables add variability to system operations
- Balancing area (BA) consolidation has been proposed
- Wind, load diversity reduce impact of variability
 - Better resource use
 - Reserve
 - Unit scheduling
 - Decrease peak generation& ramping needs

Motivation

- Tradeoffs
 - System size (more nodes & variables) makes solving to optimality more difficult
 - Increasing complexity in systems operations (ex: stochastic UC)
- Most dramatic results are seen in studies with large consolidation
- Does not address uncertainty
 - What's more valuable?
- Challenge of merging different policies, rules, and regulations

B. A. Corcoran, N. Jenkins, and M. Z. Jacobson, "Effects of aggregating electric load in the United States," *Energy Policy*, vol. 46, pp. 399–416, Jul. 2012.

Questions

- Assuming full integration is not an option:
 - How can we incent efficient coordination & trade?
 - What coordination comes closest to integration?

Outline

- Motivation
- Background
- Initial Results
- Future Work

General Market Timeline

Load & renewable forecasts, generation bids, fixed schedules, updates

Resource schedules (commitment, energy, ancillary services), prices, reliability checks

DA = Day-Ahead, HA = Hour-Ahead, FMM = Fifteen Minute Market, RT = Real-Time

Hurdle Rates

- Definition
 - Within models, a transaction cost that represents barrier to trade between BAs
 - "Economic friction"[1]
- Parameterized to simulate actual amount of trade
 - Not actual price
- Easy to implement in model objective:

$$HR(Trade^{A \rightarrow B} + Trade^{B \rightarrow A})$$

General US Markets

EU Markets (non-market splitting), West Coast

EU Market-Splitting/Coupling

CAISO – PacifiCorp – Nevada Energy Imbalance Market (EIM)

CAISO Energy Imbalance Market Details

Allocation of BA Interties

General US Markets

Actual Markets

Outline

- Motivation
- Background
- Initial Results
- Future Work

Scenarios

		Real-Time		
		No Coordination	Hurdle Rate	Full Integration
Day- Ahead	No Coordination			
	Hurdle Rate	Old WECC, EU non-market splitting	Regional authorities	CAISO
	Full Integration	EU market splitting/coupling (Nordpool, APX)		Consolidation Single RTO

Scenarios

Model

- Types of models
 - Day-ahead scheduling: unit commitment
 - Commits generation units for the next day
 - MILP, binary decisions represent commitment
 - Real-time model
 - Optimizes (least cost) power flow
 - Both models:
 - Subject to transmission & generation constraints (KCL, KVL, capacity)
 - Options to curtail wind and shed load

Model: Integrated Market

Day-Ahead

$$\min \sum_{\forall t} \sum_{\forall g} c_g P_{g,t} + c_g^{SU} v_{g,t} + c_g^{NL} u_{g,t}$$

Subject to:

Line limits, transmission constraints (BΘ), capacity limits, ramp rates, minimum up & down times, spin & non-spin reserve requirements

Real-Time

$$\min \sum_{\forall t} \sum_{\forall g} c_g P_{g,t}$$

Subject to:

Line limits, transmission constraints (BΘ), capacity limits, ramp rates, spin reserve requirements

Model: Hurdle Rate

Day-Ahead

$$\min \sum_{\forall t} \sum_{\forall g} \left(c_g P_{g,t} + c_g^{SU} v_{g,t} + c_g^{NL} u_{g,t} \right) + HR(S_t^{AB} + S_t^{BA})$$

Subject to

$$S_t^{AB} - S_t^{BA} = \sum_{\forall k \in IT} P_{k,t}^{line} \ \forall t$$

Line limits, transmission constraints (B Θ), capacity limits, ramp rates, minimum up & down times, spin & non-spin reserve requirements

Real-Time

$$\min \sum_{\forall t} \sum_{\forall \sigma} (c_g P_{g,t}) + HR(S_t^{AB} + S_t^{BA})$$

Model: No Coordination

Day-Ahead

$$\min \sum_{\forall t} \sum_{\forall g} c_g P_{g,t} + c_g^{SU} v_{g,t} + c_g^{NL} u_{g,t}$$

Subject to

$$\sum_{\forall k \in IT} P_{k,t}^{line} = 0 \quad \forall t$$

Line limits, transmission constraints (BO), capacity limits, ramp rates, minimum up & down times, separate spin & non-spin reserve requirements

Real-Time

$$\min \sum_{\forall t} \sum_{\forall g} c_g P_{g,t}$$

System Topography

- Reliability Test System 1996
- 3 Zone (99 generators, 73 buses)
- 24 hours

- Each BA is similar in size
 - # generators
 - Type of generation
 - Wind capacity

Results - Real Time Costs

Results - Prices

Results - deterministic and stochastic wind scenarios

Price results – single wind forecast

Results - All scenarios

Conclusions

- Integrated markets yield most gains from trade
 - Barriers on interties impede efficient markets
 - Going from no coordination to hurdle rates makes large difference
 - Further lowering hurdle rates most beneficial in DA rather than RT
- Further work needed to determine the simplifying effect of hurdle rates relative to actual barriers
 - Which barriers are most important to address?
 - Who should be responsible for removing inefficiencies?
- When no RT coordination, there might not be enough generation on-line to meet demand
- Average prices more consistent DA vs RT when there is no coordination day-ahead

Outline

- Motivation
- Background
- Initial Results
- Future Work

Future Work

- Different size BAs, different generation mix
- Modeling specific barriers on the intertie line
 - Self-scheduling
 - Dynamic-scheduling
- COMPETES model ECN
 - Look at European grid
- Additional balancing areas
- Greatest benefits for renewables

Thank you!

Questions?

Email: hytowitz@jhu.edu

References

- [1] Joseph H. Eto, Douglas R. Hale and Bernard C. Lesieutre, "Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies: A Review of Recent Benefit-Cost Studies of RTOs" The Electricity Journal
- [2] Frank Wolack, "The Economics of Self Scheduling," Presentation available: http://www.caiso.com/Documents/ Presentation-Economics-Self-Scheduling-MSCPresentation.pdf
- [3] Jesús María López-Lezama, Mauricio Granada-Echeverri, and Luis A. Gallego-Pareja, "A combined pool/bilateral dispatch model for electricity markets with security constraints" *Ingeniería y Ciencia*, June 2011.

